Forecasting time series with multiple seasonal patterns
نویسندگان
چکیده
A new approach is proposed for forecasting a time series with multiple seasonal patterns. A state space model is developed for the series using the single source of error approach which enables us to develop explicit models for both additive and multiplicative seasonality. Parameter estimates may be obtained using methods adapted from general exponential smoothing, although the Kalman filter may also be used. The proposed model is used to examine hourly and daily patterns in hourly data for both utility loads and traffic flows. Our formulation provides a model for several existing seasonal methods and also provides new options, which result in superior forecasting performance over a range of prediction horizons. The approach is likely to be useful in a wide range of applications involving both high and low frequency data, and it handles missing values in a straightforward manner.
منابع مشابه
A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملGeneralized Regression Neural Network for Forecasting Time Series with Multiple Seasonal Cycles
This paper presents a method of forecasting time series with multiple seasonal cycles based on Generalized Regression Neural Network. This is a memory-based, fast learned and easy tuned type of neural network. The time series is preprocessed to define input and output patterns of seasonal cycles, which simplifies the forecasting problem. The method is useful for forecasting nonstationary time s...
متن کاملForecasting time series with complex seasonal patterns using exponential smoothing
A new innovations state space modeling framework, incorporating Box-Cox transformations, Fourier series with time varying coefficients and ARMA error correction, is introduced for forecasting complex seasonal time series that cannot be handled using existing forecasting models. Such complex time series include time series with multiple seasonal periods, high frequency seasonality, non-integer s...
متن کاملArtificial Immune System for Forecasting Time Series with Multiple Seasonal Cycles
Many time series exhibit seasonal variations related to the daily, weekly or annual activity. In this paper a new immune inspired univariate method for forecasting time series with multiple seasonal periods is proposed. This method is based on the patterns of time series seasonal sequences: input ones representing sequences preceding the forecast and forecast ones representing the forecasted se...
متن کاملArtificial Immune Clustering Algorithm to Forecasting Seasonal Time Series
This paper concentrates on the forecasting time series with multiple seasonal periods using new immune inspired method. Proposed model includes two populations of immune memory cells – antibodies, which recognize patterns of the time series sequences represented by antigens. The empirical probabilities, that the pattern of forecasted sequence is detected by the jth antibody from the first popul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 191 شماره
صفحات -
تاریخ انتشار 2008